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The occurence of secondary stationary flows was analyzed in [1 to 4] for a number of
problems of hydrodynamics, by means of the topological method, and the application
of the Krasnosel'skii’s bifurcation theorem [5], This method, although very general and
requiring only a minimum of "outset information”, does not, however, afford the possi-
bility of investigating the spectrum distribution, or determining the number of occurring
solutions,

The most detailed information on bifurcation can be obtained by the analytical method
of Liapunov-Schmidt, This, not only yields qualitative results, but is also an effective
tool for computing secondary flows in the range of problems considered here, The main
difficulty encountered in applications of this method centers around the solution of line-
arized problems, Genrally speaking, such problems have to be solved numerically,
although there are cases in which quantitative results may be obtained independently of
computations, Such instances were analyzed in [1 to 4],

It should be pointed out that a combination of topological and analytical methods
yields the most finalized and full results : in particular, a complete picture of stability
loss in a convection problem may be obtained in this way, It is shown in this paper that
two secondary flows appear, immediately after the loss of stability (and the problem has
no other nontrivial solutions), This takes place in the case in which the first eigen num-
ber of the linearized problem is a prime number, Several examples are adduced in
which the condition of primeness is verified, viz, convection in a horizontal layer, and
in a vertical cylindrical vessel of considerable height, These results are set out in
Section 2, It will be subsequently shown that both secondary flows are stable, It should
be noted that in the case of a layer (as well as in certain other cases) the bifurcation on
transition through subsequent critical numbers proceeds similarly, but gives rise to unsta-
ble solutions,

Theorem 1, 1 required in the subsequent analysis will be proved in Section 1, in which
the Liapunov-Schmidt method is applied to a case which, although special, is frequently
met with in mathematical physics problems, A multiple spectrum is also admissible
here, We note that this theorem has made it now possible to establish that the Taylor
secondary flow between rotating cylinders is uniquely defined (with an accuracy of the
order of shear along the tube axis),

The Liapunov-Schmidt method yields the most detailed information on the nature of
bifurcation (number of solutions, spectrum distribution, etc,). This method requires,
on the other hand, much more information about operators than the topological method,
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The multiple spectrum causes particular complications, It is sometimes possible to
reduce the problem to a simple spectrum by looking for a solution from a particular
subspace (for example, by imposing in hydrodynamic problems certain conditions of
evenness on the unknown functions, as was done in [1 to 4],

There still remains unresolved the question of other solutions, It will be shown in the
first Section how this is resolved in one case, in which the spectrum multiplicity is the
result of the invariant character of the problem with respect to a particular group of
transformations, It appears that, subject to certain conditions (see Theorem 1, 1), all
solutions may be obtained from a single solution by means of transformations of the
indicated group, In fact, such a situation obtains in the case of flow of fluid between
two cylinders, in the problem of two-dimensional fiuid surface waves, and also in the
case of plane convection, An application of Theorem 1,1 to the problem of convection
is given in Section 2,

1, A case of bifurcation {n the presence of a multiple spec-
trum , We shall consider in a Banach space X, Equation of the form
z = Kz (1.1)
Here, K ». is a completely continuous operator in X, cancelling at zero, Let the
Frechet differential of operator K’ at point X = 0 be Adx, and >‘o be the charac-
teristic number of operator A, We assume that the following conditions are satisfied,
Condition 1,1, Operator K, is analytically determined in terms of X, A
in the region (||z]| <C p; |A —Ao] < ¥). Equation (1.1) may now be rewritten in the

form )
r="AAz + ) Rz (1.2)
k=2
where operator Ry x = Ry (z, z,..., ), k& is linear and analytically dependent on A
(2]
Ry = 2 W"Rynt, p="~—ho (1.3)
m=0

Condition 1,2, Let L, be the representation of a compact set (7 into the
space of linear operators in A, i,e, L ; is a -ontinuous operator-function on (7, and
let the following conditions be satisfied

Lgigt =1L ngzv Lg—l - Lg-l (g, g1, B2 &= G) (14)
We assume wact Equation (1,1) is invanant with respect to the following transforma-
tions Lg : LKz = KLz (ze=X; g=G) (1.5)

Expanding K,(pz) into a power series of parameter 0, and equating coefficients
of like powers, we obtain from (1, 5)
LgAx = ALg-’E; Lngx = RkLg.'IZ, Lngmx = kaLg$ ('1.6-)
It follows from the first equality of (1, 6) that the characteristic subspace X, of oper-
ator 4 , corresponding to the characteristic number )\o , is invariant with respect to
operators Lg .
Condition 1,3, We shall call the representation of L ¢ in X, complete, if for
any pair of ¢’, ¢’ & X, we can indicate such g = G that
Ly = og’ (@>0) (1.7)
We shall assume that the representation of L, in Xy is complete,
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Condition 1,4, Let the rank of the characteristic number be unity, and the
multiplicity coinciding in this case with the magnitude of Xy , be 7, This signifies
that basis ®g , ®1 ,.4s, Ppr~1 canbe indicated in X5, and that there exists a system
of eigenvectors of the conjugate operator 4 * : Y, V1 ,..., ¥y-1 biorthogonal to fo L

It follows from (1, 6} and (1. 7) that such & & G, for which @ :Lsk Po (k=1,
2,444, "= 1) will be found,

Condition 1, 5, We shall assume that when 7 is even, then a certain subspace
£, consisting of vectors orthogonal to ¥1,..., Up=1 , and containing %, is invariant
with respect to operator K.

Theorem 1,1, Letus assume that conditions 1,1 to 1, 5 are fulfilled, and that
the following inequality is true

Y= — (By? (v, Po)s Po) — (R30P0s $o) >0 (1.8)
Ry (v, @) = Ry (v, @) + Ry (90, 2)

where vector U is defined as the solution of problem

v— 7"0Av = R20q)0_ril (R20q70! 'll’,,) q)k- (v’ "l’f‘) = = (’l), ‘pr-i) =0 (1'9)

k=0
Then :
a) new solutions of Equation (1, 1) arise, when an increasing A passes the value of
Aq i the spectrum lies to the right of point Ay :
b) for every A )‘0 , close to A o » there is one nonzero solution with an accuracy
of the order of wansformation Z , :

m———— 1
z =V 1/hot p"qo + O (n)

Note , It will be seen from the subsequent analysis that, if conditions 1,2 and 1,3
are disregarded, and the assumption made that )Lo is a prime eigen number, then, with
condition (1, 8) fulfilled, two nonzero solutions will occur

3, 0= Vi/horn'go+ O ()
Proof , Any solution X ! of Equation (1. 1) may be presented in the form
r—1
= 2 ak'(Pk+y', ak=(x: wk)’ (.’/' ’q:’k) =0 (k=0v 1,...,1‘—1) (110)
k=0
' 7
By virtue of 1,2, Equation (1, 1) will have as a solution X = Lsx alongside with X

for any g € G. In accordance with condition 1, 3, element ¢ can be so chosen that
T—1

Lg(E ak’%) =ag  (2>>0) (1.11)
k=0
It follows from (1.10) and (1, 11) that solution X is of the form
z=a@ + ¥ HP)=0 (k¢=0,1,..,7—1) @>0 (1.12)

In fact, it follows from the first equality of (1, 6) that L,” commutates with 4°,
Therefore, Lsnl}lk is the eigenvector of operator A , consequently, by virtue of (1,10)

¥, ) = (Lgy'r 1P,,) =(y Lg*lpk) =0
Thus, any solution X ! is obtained from a solution of form (1, 12) by transformation

Lg . The existence of a nonzero solution of Equation (1, 1) follows immediately from
the Krasnosel'skii's theorem [5] (in the case of an even 7" we change over to subspace
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&, and utilize condition 1, 5},
We shall now apply the Liapunov-Schmidt method to finding solutions of the form
(1.12), Substituting (1,12) into (1, 2), we obtain
loe]

y— oAy = pa/ho@o - pAdy + D) Ry(a@o+y) =Ry, p=L—he (1.13)
k=2
Using the solvability conditions of Fredholm's equation, we rewrite (1, 13) in the
equivalent form as follows

r~—~1
y—lady =Ry — D) (Ry, $) @ (By, §) =0  (k=0.1,...r, —1) (L14)
k==
We shall look for small solutions of Equation (1. 14) in the form of a power series
o
= P4
y Z BV Mo=0, (e Pp) =0  (k=0,...,r—1) (1.15)
P, q=0

Substituting (1, 15) into (1, 14), we deduce that y, == yy, = yy; = Ypo = Y12 = Yoz = 0,
and for the determination of coefficients Y o4 , Uy, ¥ 21 we have the following
equations Yoo — AoAYyae = PoHa@o

Y30 — hoAyzo = Po {Ra’ (@0, Y20) -+ RgoPo} (1.16)
Yar — hodye; = Po {Ayn + Boyyqo}
The projection operator Py is derfinled by Equation

Pyr == — Z (@, By) Py re X (1.17)
k=0
We thus have
Y = Yao®® 4 ¥300° + Y@ ... (1.18)

n which terms to powers higher than three have been omitted , Substituting (1.18) into

he second equation of (1, 14), we obtain for A= 0 the bifurcation equation in the form
(1.19)

/ Mot 4 @2 (RgoPo, Yo) + &3 1(R20° (Por Yao)s o) + (RaeQo, o) ] 4 poc? (B21G0, Po) ... == 0

Here, terms to powers higher than three have again been omitted, It is clear that
(]?30 Pe » IJJO) = 0, as otherwise Equation (1, 19) would have had only one nonzero solu-
tion @, whereas, from considerations at the beginning of this proof, it follows that
there must be at least two roots (one positive, and one negative), Hence, Equation
{1.19) can be written {see (1,18} ) as

1

Ty b 703 - pa? (Ru@e, Po) -+ ... =0 (1.20)
Using Newton’s diagram [6] , we deduce that Equation (1, 20) has one (and only one)
positive solution a=V1/hyu's+0 () (1.21)

which exists for any small positive {1, The Theorem is proved,
We shall illustrate the application of this theorem by a simple example,
Example ., We shall consider the problem of finding a 21r-periodic solution of
the ordinary differential equation .
v —u' = Au + wu' (1.22)
Converting operator -3°/dx" by mea:. of Green's operator 4, we reduce Equation
(1, 22) to the form of (1, 2), where
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K u= Adu ++ Ryu, Rou =4 (uu’) (1.23)
It is easy to show that operator K, is completely contjnuous in the Hilbert space #,
in which the smooth 277 -periodic functions with a zero mean value in (=7, T) are
compact, while the scalar product is determined by Formula
(uz, )y = S uy uy"dr (1.24)
-
Operator 4 is self-adjoint, rigorowsly pesitive, with eigen numbers and eigenfunctions

which are 1. 1 1.95
Mg == K2, (pm‘:k]/:r_csm kz, (plk=}£—‘/—5—coskx (k=1,2,...) (1.25)

Let G be a set of circle rotations, For g = G (g is the rotation by the angle @)
we stipulate Liu=u(z 4 g) (1.26)
Conditions 1,1 to 1, 5 are readily verified, if we assume that 4’ in 1, 5 is the subspace

of odd functions from A . The value of Y is computed from (1, 8). Equation (1, 9) in
this case is equivalent to the boundary value problem

1
—v" =k 4 5 sinkz coskz, v(z+20)=v(2), VL Py Py (1.27)
Using Equations (1, 27) and (1, 8), we find

1 ° . 1
v =g Sin 2k, 1= — 5 (*Pox + 2" Poy)Pox 3% = 57 > 0 (1.28)
In accordance with Theorem 1,1 a new solution occurs, when an increasing A passes
2 .
one of the values Agy =%° (K =1, 2, ,,.). Itis

Uy = % V12 (b — Ap)2sin kz 4+ O (A — Ay) (1.29)

All other solutions , bifurcating from the zero solution, are obtained from (1, 29) by
means of transformations (1, 26) .

2, Application to the problem of convection, Free convectionina
fluid, filling a bounded space 1, is described by the system
vAV —Up = (v,W/) v+ B Tg, yAT — v-NJT = cv,, divv=0_ (2.1)
We shall assume that at the (sufficiently smooth) boundary .S’ of the domain 2 the
following boundary conditions are satisfied :

»p=0, T =0 2.2)
Problem (2. 1), (2, 2) was reduced in [4 and 3] to the operator equation
v=K(v,c¢)=cAv + Rv (2.3)

in the Huwert space A, of solenoidal vectors, vanishing at boundary ', and appertain-
ing to W, , This transformation is carried out in the following manner, Let v H;,
f(z) & Lo, (Q). We denote by 7' =F,J the generalized solution of the boundary

value problern 'XAT, ___ v.le —_ f, T/ |S — O (2.4)
The second of Equations (2, 1) yields now
v=cByy,=cM v (2.5)

The principle of compressed mapping makes it possible to obtain for small ve Hy,
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the following expansion

23
Mv:kglev, My =B, Mgy =By(v -VMy) (2.6)

Operator # acts from the 4 - into the Ao -Hilbert space of functions vanishing at
S, with scalar product

(T, ") :S VI - VT dx
(83
We next introduce operator [, which re-establishes the generalized solution of the

linearized Navier-Stokes equations at their right-hand sides
VAV —N/p =, divv =0, vig=0, v = Lf (2.7)
It is now easy to proceed from (2, 1) to (2, 3), noting that
K(v,¢)= L(v, V)v + BeL (gMv)

Av = BL(gMyv), Rv=L(v,V)v+pe ;22 L(gMyv) (2.8)

Operator A is completely continuous, self-adjoint, and rigorously positive [4] : its
spectrum consists of positive characteristic numbers, We denote its smallest character-
istic number by Cq , and shall consider it to be a prime number. The corresponding

eigenvector will be denoted by ¢ = ey (2.9)
Assuming T = CoBo®a . we obtain the confirmation that the following equations
are fulfilled vAQ — Vg =ptg, div ¢ =0
AT = CoPs, Tls =0, ¢ls=0 (2.10)

We introduce yet another vector w & H,, and function 6 & H, as the solution of
VN AW — VP = (@, V)@ +Pig, XAD = coey + 9V
divw =0, wis=0, Ols =0, wl e (2.11)

Lemma 2,1, Problem (2,1) issolvable and has a unique solution,
Proof , We proceed from (2, 11) to the operator equation in /4 . We have

0 = eBowg 4 Bo (9-V7) = co (MW - Mp9), W =AW - L (2 V)@, W | ¢ (2.12)

If the second of Equations (2, 12) has a unique solution, then function 8 is determined
by the first equation, From the results of [7, 8 and 4] it follows that w, O are as
smooth as desired in {1, provided that boundary S is sufficiently smooth,

There remains, thus, to verify the solvability condition of the equation defining w,
i.,e. the orthogonality of this equation free member to the eigenvector @,

We have N

L@y, =— \ALeVesdr=—1 {1 Vet vrivtr=0 @19
0

0
The Lemma is proved,

We shall now calculate the value of Y,defined by (1, 8), In view of the self-adjoint-
ness of operator 4 , we have to assume that in (1, 8) Y, = @, = @. We assume that
u = Ray (W, @) + Raop (2.14)
With the aid of (2, 8) we obtain (2~15)

u=L[(w,V) e+ (9, ) Wi+ feoL [gBo (W-\/Bops -+ @V Bow; + @7 M,0)]



Free convection and bifurcation 109

in accordance with (1. 8), (2,14) and (2,15) we have

1 i
T = —(u, cp)m:iAuq;dszS (9, V)W - @dz -+
0

Bgeo (
+ 75 P:Bo (W - VBops + ¢ - VBw; + @ - V Myp) dz (2.16)
0
Here, and in the subsequent analysis, we shall use the following equalities readily
deduced by integration by parts by taking advantage of the solenoidal properties of vec-

tors w’ @ 2
S W, V)¢ 9dz=0,\ (3, V)w . pdr = ~—~S w - (¢, V)pdz. (2.17)
Q Q 0
S - Vidz=20
Q
Making use of the self-adjointess of operator 54, and of Equations (2, 10),(2, 12)

and (2,17), we now reduce (2, 16) to
Tumis - (9, V)cpdx—-—B—ngGQ Vitdz (2.18)
Q

Finally, the substitution in (2, 18) for (@, \/)@. ¢- Vt end X of their expressions from
(2,11), followed by integration by parts, yields

2)
Ty, + 10k, + | ounde (2.49)
Lemma 2,2, Let vEH, T H,. Then, inequality
J(v, T)=v|v[E + Bfmﬂ’iﬁz’gggmuzggg Tvedz> 0 (2.20)
O

is valid, The equality is obtained only under condition
vV = ag, T =ar, o = const (2.21)
Here @, T is the eigensolution of problem (2,10} .
Proof , According to the classical variational principle, equivalent to the first

boundary value problem of Poisson’s equation, functional J (v, 7} with fixed v & Hy,
reaches its minimum, when I’ is the solution of the following boundary value problem :

X AT = ¢yuy, T|g=20 (2.22)
or, in other words, at 7 = CoBo Vs ., In this way, the inequality
J v, TY> J (v, coBovg) = v|v [ — Beyeo | Bﬂvgﬂm (2.23)

is satisfied,
However, for the smallest characteristic number ¢, of operator A in (2, 9) the vari~
ational principle (see [4])

1 (Av, V)H‘ Bex | Bovs "sz

o S max Mo =y e
0 veH, xI VﬁH, v Ve=H, [i vi{H‘

is valid, Its maximum is obtained only at v =a.¢p. It follows from (2, 23) and (2, 24)
that the minimurmn value of functional J (v, 7) is equal to zero, and is reached at

v=oag, T = ¢Byv; = ar. The Lemma js proved,

Since Y =J/(w, 8)/V, it follows directly from Lemma 2,2 that Y= 0, We shall
prove that Y is rigorously positive, As according to definition (2,11) w | @, it

(2.24)
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would follow from the equality w = 0@ that & = 0, and consequently w = 0, 8 =0
Then.from (2, 11) we have the tollowing equalities :

(%, Vo= —Vp. ¢ - Vr=0 (2.25)
Lemma 2,3, Let ¢, T be asolution of system (2,10), and let the second of
Equations (2, 25) be fuifilled by it, Then, ¢ = 0, v = 0.
Proof, By virtue of (2,25) we have

0= S%?-Vr dr == —-(g Qs dz (2.26)
Q

Multiplying now the first and the third equations of system (2, 10), respectively, bv
® and T, and integrating over the domain Q) using (2. 26), we obtain

violg!=—Bg ‘Srwx =0, xltlg?=—c ,Sws dz =0 2.27)

Thus, @ = 0, v = 0. The Lemma is proved,

It follows from Lemma 2, 3 that, as shown by the preceding analysis, Y > 0, Using
the Note to Theorem 1,1, we derive the following theorem,

Theorem 2,1 , Let the smallest eigen number C, of the linearized problem
{2.10) be a prime number, Then, for ¢ > ¢, and sufficiently close to Gy, there
exist two nonzero solutions of the operator equation (2, 3), or (2,1) (2.28)

ve=F Vic—co)fere+0(c—c)., T=FV(c—co)fcor ™+ 0 (c—co)
where the positive constant Y is defined by (2,18), or (2,19) (*),

Problem (2, 1) has for any ¢ S ¢, a unique solution v = 0, 7'= 0, while for ¢ >Cgp
or close to (y, it has exactly tnree; one zero solution and a pair of solutions (2, 28). The
whole of the intervai (@y. @1), where €1 1s tne second eigen number, appertains to
the spectrum of Equation (2, 3),

Proof , Only the last statement of this Theorem requires justification, We divide
the proof into several Lemtmnas,

Lemma 2,4, All solutions of Equation (2, 3) are contained within a sphere of space
A of radius /7 which depends only on domain Q and parameters of (2.1) ,

Proof ., Forany ve& H,, ¢ < H, e following inequalities of the kind of the
Sobolev composition theorem are valid :

IVl <mpl¥ig, 19k, <mplely, (<p<6) (2.29)

We shall determine function ¢ (X ), which is twice continuously differentiable in Q
and such that $jg = cxzs. It can be further assumed that the following inequality is satis-

fied : T, <e {2.30)
where € is arbitrarily small, It is easy to present function ¥ in an explicit form. assum-
ing that within the boundary strip it is a polynomial with respect to P(X), that 1s. of the
distance of point X from boundary S, and that outside of the boundary strip we have

¥ =0, We make the following substitution in Equations (2, 1) :

T = Ty ¢ — cxg (2.31)

*) The possibility of the existence of a pair of secondary convective flows at supercriti~
cal values of temperature gradient was indicated. in [9].
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Function 7y satisfies conditions

YATy —v-UTy = —xAp + v- T, Tole=10 (2.32)
Multiplying (2, 32) by 7, and integrating over i, we obtain
A ol = —x 7Tt — Q W Ttz (2.33)
a
Using H&lder's inequality and the composition Theorem (2, 29), we derive from (2, 33)
X ol <k IV, + mell Wi, - 1¥ig, (2.39)

We now multiply the first of Equations (2, 1) by v and integrate over i, We obtain
VIVt = — Bg Q (To + ) eodla (2.35)

With the aid of (2.29) we derive from (2, 35)
V[V, < Beme| Tolly, + Bema|¥1,, (2.36)

The required estimate now easily follows from (2, 30), (2, 35) and (2, 36), if
€= ¥v/2Bgm,® is assumed. It is of the form

¥, < 22 (Tl + mall bli,) = m 237

The Lemma is proved,

Lemma 2,5 , Problem(2,1), (2,3) has a zero solution only when ¢ S ¢4.
Proof . Since the case of ¢ <Gy had been considered in [9 and 4], we shall
assume that ¢ = Qo . Multiplying the first of Equations (2, 1) by v and the second by

Bg T /ey . integrating over {1, and adding, we obtain
J(v, Ty=10 (2.38)

In accordance with Lemma 2, 2, it follows from (2, 38) that v = a®, Z=aT
(L = const), But then relationships (2, 25) (in which a new function is substituted for
D) must be fulfilled ,” And this, in accordance with Lemma 2, 3, means that @ = 0,
The Lemma is proved,

It follows from the general theory of bifurcation of operator equation solutions [6],
that there exist such numbers }l, , 7, that for IO -Cp| < Ko Equation (2, 3) has
no solutions in sphere || v | g, < m, other than zero and the one given by (2.28).
We inwoduce notations as follows:

infﬁ""’K (V, ¢o) HH; =8, Sup“ Av HH: =0, > 0 (239)
(mo K[|V llgy, <my, ma=maxm, ¢ eLer)

Since ¢ = Cg , Equation (2, 3) has no nonzero solutions, and operator # is completely
continuous, then O; > 0, Therefore, if

0<ec—cy<<dy/8. (2.40)
Equation (2, 3) cannot have any solutions outside sphere [ v | g, <C m,.
Indeed, in accordance with Lemma 2, 4 there are no solutions outside the sphere
| v]m <Cmy, and there are none within layer my < | V| m, <{ m; by virtue of
the simple estimate
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[v—K( ols > | v—K (v, ¢l — (€—co jAv]a, >
>68, —(c—c)b >0 (2.41)

Hence, with condition (2, 40) fulfilled, all solutions of Equation (2, 3) are contained
within sphere I vﬂ o, <. My, and there are exactly three of these in this sphere,
Finally, it follows from Lemma 2, 4 that the rotation of the vector field v-A(v, Q)
on large spheres is + 1, As the zero solution index for o< C <1 isequalto —1,
there must exist nonzero solutions (see [5 and 1]), Theorem 2,1 has been fully proved,

Example 1, Convection in a vertical cylinder, We shall indicate
here, without detailed substantiation, a case in which the spectral problem (2, 10) may
be solved by the asymptotic methed, Let space Q vea cylinder with a vertical axis
and normal cross section W, We shall consider the case in which the cylinder height
A is considerable,

We substitute in (2, 10) variables 2= A§ /d, where d is the diameter of section W,
We shall look for a solution of systemn (2, 10), corresponding to the 7th eigen number
Cn in the form of a power series of the small parameter (*) € = d/A.

[ee] (o0} Q20 ¢}
k ; .
Q= 2 & ?k’ T == E 8}1'{;‘-, q = Z akgk+1x Cp = Z ahcﬂk (2'42)
k=0 k=0 LES | k=0}
Substituting (2, 42) into (2, 10), we readily deduce that

Por = Pop = 0, g0 = qo (§) = al + const, Qo = w (@), 7y), To = To(wy, )

and obtain for the determination of Cpy the following spectral problem :

vAw=a+Bgte. YXNTo=cpw, W iSu =0, Tlg = 0, Swdxl dxg = 0(2.43)
@

The last of conditions (2, 43) implies that the flux velocity through the cross section
W is zero, which is the consequence of no-slip condition at the boundary S So is the
boundary of section W : Qis an unknown constant ,

We can obtain an explicit solution of problem (2, 43) for a2 number of cases (for exam-
ple when W is a circle), We shall consider in greater detail the two-~dimensional prob-
lem of convection in a rectangle, In this case w = w (x), T == To (2}, * =&, and
problem (2, 43) becomes (< = 2) 1

v’ =a -} Bty YT" =cpew, w=T=0 (z=F1) S w(w)de =0 (244)
-1
Solutions of problem (2, 44) are either even, or odd, Even solutions are of the form
w (x) = cospeoshpz —<oshp COSP & (2.45)

Function T, is determined from the first of Equations (2. 44), constant @ by condi-~

tion that Ty (1) = 0, and the corresponding eigenvalue is found from Equation
wnp =amnp, c¢=xvpt/Bg, p0 (2.46)

For the odd solutions we have
a =0, w = Pgsinpz, = —vp¥sippz, p=ikn (kA= 1,2,..) {2°47)

*) Expansion (2,42) is valid at some distance from the cylinder bottom § = 0, 1, where
boundary layer phenomena occur, It is important to note, that Cno is determined
independently of the construction of boundary value solutions ,
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It follows from (2, 45) to (2. 47) that all eigen numbers Cny are prime numbers, Indeed,
Equation (2, 46) has a single root within each segment (ATT, (2X+ 1)T1/2) (%=1, 2,..)
and no other roots whatsoever, In particular, its smallest root is P; = 3,9264, But,
@n ~Con when €0 (we stress the uneven convergence with respect to 7). Therefore,
all of the first eigen numbers Gy , C1 ,..., Cx (% is any arbitrary given number) are
prime numbers, provided that € is sufficiently small,

Hence, Theorem 2,1 is applicable to problems of convection in a vertical rectangular
vessel of a height considerably greater than its width,

Note, A similar result is also easily obtained in the case of a cylinder of circular
cross section (relevant computations were carried out in [10], p.50), The first-eigen
number of problem (2, 44) is probably always a prime number, Subsequent eigen num-
bers may, however, be multiple numbers, as was shown on the example of a rectangular
W, Multiple eigen numbers occur, however, only rarely, as in the periodic problem
considered in [2 and 3], and only with special dimensional relationships.

Example 2, Two-dimensional convection in a horizontal chan-
nel, We shall consider the two-dimensional problem (2. 1) in a strip defined by
0 < 2= A, We assume that velocity v is periodic with respect to X = X , with
period 2T7/0y , and that the flux velocity through the cross section is zero, As was
shown in [3], there exist for all values of 0; double eigenvalues of the relevant linear-
ized problem (2, 10), with the exception of a certain denumerable set, to which corre-
spond the following eigenvalues

Ty (x, z) = 0 (2) cosax, T,(z, z) = m (2 sinax, ¢; =L Br; g (i=1,2) (2.48)

The problem is invariant with respect to shear along the X-axis. We introduce oper-
ators L, and Ly

Tg= LT (x, 2) = v (z + g 2), 9 =9+ 8 2)=Lo (2.49)

For functions T and vectors @ periodic with respect to ), parameter { may be
considered as an element of set 7 of circle rotations, Corditions 1.1 to 1. 5 of Theorem
1.1 are evidently satisfied, The validity of condition (1, 8) follows from Theorem 2, 1,

Hence, a two-dimensional convection in a channel is uniquely defined by a period
2TT/Qg (with an accuracy of the order of shear along the Xx-axis) for all 0y, except
of the case of a denumerable set,

Example 3, Cellular convection in a layer, We shall now consider
the problem of a twofold periodic, or hexagonal convection in a horizontal layer of
fluid heated from below [3], Using Theorem 2, 1 in conditions similar to those considered
in {3], we find that when the temperature gradient passes through the first critical value,
a pair of solutions occurs. We would remind that we are considering here flows which
satisfy conditions of periodicity (or hexagonality), as well as certain supplementary
conditions as regards evenness, We note that it is easy to show on this example that the
bifurcation proceeds in an analogous manner, not only for the first eigenvalues, but also
for all subsequent eigenvalues, However, in such cases unstable solutions occur,

It may be further pointed out that here secondary flows differ insignificantly ; they
are obtained one from another by shifting in plane Xy 5.
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